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Introducticn

To deal with the problem of many problem-oriented languages to be

translated to many machine languages, three main lines of attack have been

suggested.

1)

(2)

(3)

That the multiplicity of problem-oriented languages be reduced by
the adoption of a universal-algorithmic language, e.g.,ALGOL. This
legislative manner of abolishing the difficulty does not seem to be
a complete solution: such languages as have been proposed lack
universality in varying ways. For example ALGOL has no provision
for the processing of strings of symbols. Ir addition, it is riot
at all clear that present ideas of what cunstitutes a universal
language will be valid in a future with time-sharing and even per-
haps self-organising computers.

That a common machine-oriented language be devised. This language
(UNCOL for short) is thought of as an intermediary language through
which translation will be made, Each problem-oriented language is
to be translated to UNCOL by a translator that can be written in
UNCOL, An UNCOL to machine-language translation completes the
process,

That translators be so constructed that they accept the description
of a source language and are thereby converted into translators for
that language. For each machine, only one such transiator need be

built.

This report follows the third approach.




In order to give a degree of universality tc a compiler, two things must
be dcrne. First, there must be some method of describing the source language;
and, secornd, there must be some way of doz:ribiiy the properties of the
machine for which translation is made. In great measure, the first problem
was solved by the introduction by Backus of a notation for describing the
syntax of ALGOL l/. This notation is related to similar notations in linguis-

tics (phrase—s%ructure rramar in substitution form Z/) and in logic
2

(productions ). The second problem is one of considerable difficulty.
Although it is possible to describe the properties of a computing machine,
as is done in any reference manual, such descriptions are not in a form which
is simple to manipulate mechanically, This report proposes an alternative. -
that the description of the source language should not be made independently
of the target language but should exploit any properties of the target language
that are useful. For example, if the machine has the ability in one instrue-
tion to add the absolute value of a number, the source language should be
described with that operation as one of its primitives, rather than the two
primitives of addition and taking the absolute valus.

This report is divided into four sections. The first section proposes
a mechanism for scanning a linear text, and performing a syntactic analysis.
A pseudo-machine, the Syntax Machine is described, whose programs may be con-
sidered to define the language of the text. The output from the Syntax Machine
is a string whose evaluation leads to a (partial) translation of the source

text.

1/ J.W. Backus et. al.’'Report on the Algorithmic Language ALGOL 60°’;
Communications ACM 3 p.299, May 1960.

2/ N. Chomsky ’’Three Models for the Description of Language.’
Tr. IRE, IT-2; No. 3. p.l13; Sept, 1956.

M. Davis Computability and Unsolvability, Ch.6; McGraw-Hill,
New York; 1958.




The second part of the report discusses, mainly by examples, the
application of the Syntax Machine to translation for a particular target-
machine language, and shows how the syntax description may be written to
exploit the special features of the target machine.

The third sections considers the role of Declarations in the source
language and the mechanisms required to effect them in the translation process.
The fourth section deals willi a supplementary process of assembly which is

required to evaluate the strings produced by the Syntax Machine.

1.2. A Notation for Syntax

The notation to be presented is similar to that of Backus, but with an
important difference. Whereas the notation of Backus enables texts conform-
able with the rules of syntax to be derived by substitutions, the present
notation is used to express a decision procedure that tests whether an example
of text conforms to the rules.

The decision procedure tests the legality of a string by applying one
of three types of tests to the string, Let us denote syntactic variables
by enclosing the name of the variable within the brackets <> , and denote
syntactic ccnstants ( i.e., characters of the alphabet) by themselves. The
three types of test and their notation are:

(1) Is the string a value of a syntactic variable which is the concatenate
of other syntactic variables or constants?
This is expressed by the formula
<A> = <B><C>KD> ...<X>
where juxtaposition in the formula signifies concatenation in the
string tested, and the sign :: = means that the variable on the left

is defined by the expression on the right.




(2)

(3)

Is the string a value of a syntactic variable defined as being an
alternative of several variables?

<A>::=<B>|<C>

|
where the connectiveldenotea that the variables are alternatives,

<D> ‘ ooa [( x>

in the sense that the string is a value of < A > if it iz a value
of < B>, or of < C> and so on.

Is the string a concatenate of several strings with the last string
repeated an indefinite numter of times (perhaps none)?

This is expressed by the formula

<A> 1= <B> <C> <D> ... {<x>}

where {' } denotes iterated concatenation, and the definiens has at

least one term before the iterated concatenation.

In the foregoing it has been tacitly assumed that tests implied by the right-

hand sides of these expressions had been taken in the order of writing. If

this is now adopted as a convention of the formalism, then the formulae

express algorithms for testing whether strings are values of syntactic varia-

bles.

The formulae now have the corresponding interpretations.

(1)

()

(3)

The string is an < A > if a head string is found tc be a < B> and
the head of the remaining part of the string is a < C >, and so on.
The string is an < A > if it is a < B>, or if not that, then a < C >,
and so on,

The interpretation is simiiar to that of the first type, but with

the last component iterated.




1.3 Syntax Notation as Program. The Syntax Machine

In this section a pseudo-machine, called the Syntax Machine, will be
defined that uses the definitions of the previous sections as piograms to
decide whether strings are values of syntactic variables.

Consider a machine with an input tape on each consecutive position of
which is inscribed one character of a string to be analyzed. The machine
obeys program steps of the form F,AT,AF where F specifies the action to
be taken, and AT,AF specify the addresses of the next program steps., For
each character of the alphabet and for some important subclasses there is a
machine instruction of a type called a ’’Comparator.’’ A Comparator instruc-
tion, say for the character '’X’’, will read the character presently under
the reading head on the input tape. If the character is *°X°’, then the
input tape is moved by one character position and the next instruction of
the program taken from address AT, If the character is not '’X°’, then the
tape is not moved and the next instruction is taken from address AF. Where
the Comparator is for a subset of the characters the action is similar; if
the character under the reading head belongs to the subset, the tape is mcved
and the next instruction is taken from location AT.

In programming for this machine, another type of program step may be used,
the Recognizer: it is a subroutine composed out of Comparators and Recogni~
zers, To call a subroutine a special function of the machine, denoted here by
S*, AT, AF, is used. Its action is to copy the present position of the input
tape on to the current level of the control push-down list, together with the
addresses AT, AF, in parallel lists. Then the level of control is increased
by 1 and the next program step taken from location S, Two more special

nstructions provide for exits from subroutines, in case of failure or success
of the decision process. These functions, called ’’'False’’ and °’True,”’

decrease the level of control by 1 and cause the next program step to be taken




from the AF or AT addresses in the control push-down list.

In the case of

"’False’’ the input tape is repositioned to be as it was when the subroutine

was entered.

By this means Recognisers can be constructed that act like Comparators,

but reccgnize strings of characters.

With this apparatus it is possible to write programs for the syntax

definitions of the previous section.

Examples

1. <A> g:=

2. < B> s:=

3. <C> s:=

L, < I> :3=
Programs

a \ b

<A> <A>

x {7}

-

<L>{<m>}

notation as follows:

Label
1) A
sl
32
53
Sk

2) B

3) C

L) I

Here C(x) denotes the Comparator for x, and similarly.

Function

C(a)
c(b)
C(e)
False
True

AR
A%

c(x)
c(y)

13
NL*

AT

Sk
S4
Sk

S5
SL

56
Sé

57
57

which recognizes the occurrence

of the character a or b or c.

if A is as defined in Ex.l. this
recognizes the pairs of characters

aa.ab,ac,ba,bb,bc,ca,ch,cc.

recognizes X,Xy,Xyy,Xyyy

etc.

recognizes ALGOL identifiers, if L
is a recognizer (or comparator) for
alphabet letters and NL is a recognizer

for letters and numerals.

for these examples may be written in the ’’machine’’

52
S3

S3
S3

S3
S4

S3

o

Sk

instruction




In this notation, we can write programs for which there is no representa-
tion in the algebraic tormalism; this will be convenient on occasion, We
could define syntax in terms of programs for the syntax machire: this, like-
wise, may enable us to write some forms of syntax not representable by the
algebraic formalism, or if so, only by uneconomical programs.

An additional feature of great power will be to allow subroutines to
store bits in a list working in parallel with the push-down list, so that a
syntactical property recognized in a subroutine may be tested and cause
branching in the routine controiling it. In a binary computer it will be
easy to store many bits in the same machine word (usually 30 at least in most
binary computers).

Two functivi:s are requireds ¥
(a) M(X) . Copy a bit into bit position X in the k-l th level of the push-

down list: k is the current level of the routine in which M(X) acts.

X is specified using the data field of the instruction; the next instruc-

tion is teken from the address specified in the AT field,

(b) K(X) . If the pseudo-machine is currently operating on level k, examine
the X bit on level k., If it is 1, proceed to the address specified by
the AT address; if it is O proceed to the address specified by AF.

When a subroutine is entered in level k, from level k-1 the set of bits

(or marks as they will sometimes be called) should be set to O.

# There are many ways of doing this. It would be more economical
in machine time and storage to allow the M and K functions
to set and test many bits. For the simplicity of exposition,
we adopt the simplest M and K functions.




1.4 Flow Diagrams for the Syntax Machine

The simpiicity of the operations of the syntax machine, maxes it
possible to write flow diagrams precisely, by the use of the following
converitions.

(1) Unless otherwise indicated by arrows, the flow of control is
across the page from left to right, or downwards.

(2) Unless otherwise indicated, true exits from comparators are
written horizontally, and false exits vertically.

(3) Comparators are indicated by circles containing the character
to be compared: Recognizers are indicated by the name of the
reccgnizer, enclosed in angular brackets.

(4) To indicate the M function that places a mark in the push-down
list, write M(X) in the diagram, where X is the mark. For mark
comparators, use K(X), with exit conventions as with comparators.

(5) To mirimize linus of contrcl, nodes of the flow diagram may be

labeled. Recognizer exits will be labeled '’True’’ or '’False,’’

Example: A ::=< B> { a } may be diagramed as

e




1.5 Hecursive Programs for the Syntax Machine

In this section we investigate certain properties of the machine; in
particular, we ask for rules for constructing programs that will always
provide a decision. An example shows that it is possible for programs to
cycle indefinitely. (e.g., single instruction whose AF address is the address
of the instruction itself). However, there is one main scurce of danger in
programs using notation of the three standard types, that of the careless
use of recursion. The manner of constructing subroutines allows recursive
definitions to be used.

Consider the program, < A> ::= < A> < B> . In order to test
whether the text is a value of < A >, the question is asked, ’’Is the string
of characters starting at this point an example of < A >?°°

This question is answered if two subsidiary qu2stions are answered in the
affirmative., The first question is exactly the same as the original and is
asked at exactly the same position of the input tape. However, in the program

<A> ::= < B> < A> this circularity does not arise, because the question,
"*Is the string an example of < A > ?’’ is never asked twice at the same posi-
tion ¢f the input string. The tape will have moved because of the applicaticn
of the program step < B>, which must have a successful outcome {and hence the
input tape moves) before < 4 > is applied again. The first example is of a
program with an “’infinite loop;’’ the second is a finite program, if applied
to a text of finite length (and in practice, all texts are finite).

Circularity in programs is not always so easy to discern as in the above
~xample, There is, however, a simple rule whose successive application checks
absence of circularity. A program step is non-circular if all program steps
in its immediate definition are non-circular when it is defined by a formula

of type 2 (i.e., as a set of alternated) or (for formulae of types 1 and 3) if




i0

the first step is non-circular. Any program step that is a Comparator is non-
circular, For example in the formulae of types 1 and 3
<A> ::=<B> <C> <D> ... or
<A>:=<B> <C> <D> .. {<x>}
< A > is non-circular if < B> is non-circular, In the formula of type 2
<:A>:2=<B>|<C>‘<D> 000
< A> is non-circular only if < B>, < C>,<D> ... are all non-circular, #*
A1l steps in & program must finally be non-circular. The proof of this rule
follows from the observation that a non-circular program step either exists

via the *°Fail’’ exit, or it moves the tape forward.

Recursive definition is permissible subject to this rule.

1.6 The Algorittmic Form of the Syntax Formalism

In this section we explore the difference between the use of the
syntax nota*tion to express rules of derivation and rules of string analysis.
The discussion of the previcus section shows that some forms of recursive
definition are invalid as rules of analysis; these forms may be expanded and
rearranged into the form

<A> ::=<A> B> | <C>
which expresses all the possible formulae rendered invalid as rules of analysis.
The strings generated by this rule of derivation are of the form CB ... B
i.e., those strings which have n > 0 strings of type B concatenated at the
right of a C. The algorithmic for.. of the definition is < A > 3:=< (€ > {< B >}

This shows how the invalid recursion may be avoided.

# For subprograms written in machine language, the rule is that
the program steps that read the heads of strings must be non-
circular.
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Another difference is in the interpretation of the type 2 formula; in
the algorithmic form the order of the terms is important since it is the order
in which tests are made. For example, the substivution rule

<A>::= b ba generates the two examples ''b’’ and '’ba.’’
However, if this were taken as an algorithm and applied to the string '‘ba’’
it would test merely the first character "’b,’’ and finding this to be a pos-
sible valus would accept it, leaving the character '’a’’ unscanned.

Consequently the correct algorithmic form would be

<A> ::= bha b
The ordering relation among the alternatives in the definiens of a type 2
formula may be expressed by the rule that if one rescognizer A defines
strings that are heads of any strings defined by a recognizer B, then B
must precede A in the formula., If no ordering is imposed by this rule,then
it can be made to minimize cost by testing those sirings that are frequent

before those that are rare.

Remark

The difference between the two formalisms is that in the case of the
algorithmic form a direction of scan is an essential part of the interpreta-
tion, whereas in the substitution form no notion of scanning is present. It
is suggested that source-language syntax be expressed in algorithmic form to
avoid ambiguity; this form may always be interpreted in substitution form
(but not vice versa, as we have seen). Two forms of algorithmic syntax are
possibkle, according to the direction of scan; in this note the natural order

of scanning, as in reading, is assumed.




1.7 The Syntax Machine with Output

In previous sections we have discussed how to recognize texts that conform
to the rules of a syntax; the result prcduced by the machine has been only an
indication of validity.

An output can be generated as follows:

(1) Each comparator instruction (reading a character of the input string)
can be modified to write the character on an output tape if it is
recognized by the comparator. Such comparators that produce output
will be written with underlining., Thus in the recognizer < A > ::=

b

c, ''a’’ and "’b’’ will be written on the output tape but not

¥ )

¢ ' whenever one is recognized by the recognizer < A >.
(2) Whenever a '’True’’ return is made from a recognizer there will be

the option of writing a pattern of the form ( p ¢ q ¢ r ) on the cur~-
vvvvvvvvvv utput tape, This pattern may be written in the

data portion of the ''True’’ return instruction. The elements of this
pattern will have the interpretations:

2a., p specifies an instruction or a macro-instruction for subsequent assembly.

2b. q is a type number, specifying the manner in which the pattern
(p:q:r ) will be treated by an assembler whose input is the present
output tape.

2c. 1r is the number of characters or character groups written on the output
tape by the recognizer.

(3) If a recognizer is named by a pattern ( p 2 g : r ) the whole output
generated by this recognizer will contribute 1 to the character count
of any recognizer using it. If a reccgnizer is not so named, each
unit of output generated by it will contribute to the character count

of any recognizer using it.

S ——
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(4) The action of naming will be signified in the algorithmic notation
by adding the naming pattern in quotation marks at the end of the
corresponding formula, Example:
<C> 1:= x {I} (P:Q:0)"
will recognize x, Xy, Xyy, etc. on the input tape and generate the
corresponding patterns on the output tape, viz,
(P:Q:0)
v, (P:Q:1)
¥,¥, (P:Q:2)
¥,¥,¥,{P:Q:3) ard so on,
Note that the naming pattern has r=0 in the program,
In flow diagrams a true return with naming will be indicated by the
naming pattern, ’'(P:Q:0)°’.
(5) When a *’False’’ return is made from a recognizer, the output tape is

repositioned to the position it had when the subroutine was entered.

1.8 The Syntax of the OQutput

The language of the output is particularly simple. Its alphabet is formed
from the characters of the original alphabet together with the symbols, (P:Q:R)
which are written by naming. These latter are '’syntactic operators’’ whose
operands are either characters of the original alphabet or are expressions
formed by syntactic operators.

We define recursively the class of output strings as follows:
1. All characters from the original alphabet are values of syntactic wvariables.
2. Let Vj denote values of syntactic variables &nd (¢;r) denote syntactic
operators of order r, #> 0. Then the expression, Vi, V,, ... , Vx , (f:r)

is also a value of a syntactic variable, Examples are

(g:0)
v, (¢31)
V,V.(g:1),(g:2)
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3. The output string generated by a named recognizer is a value of a syntac-
tic variable,

In the processing of the cutput string, the values of syntactic variables
will be used to construct segments of the target language according to nature
of the syntactic operators. The three parts of the syntactic operator have
separate purposes. P will be data, Q will tell how the data P and the data
from the R operands will be combined. Thus the cutput string may be viewed as
data, with the processing rules combined with it.

The output string is an example of postfix notation, similar to the prefix
notation of the logicians, but in reverse order. There is a particularly
simple algorithm to evaluate axpressions in postfix notation. Let there be
a list, the push-down 1list L, each position of which is capable of holding
{directly or by indirect reference) the value of a syntactic variable. Then
as the output string is scanned syntactic variables are placed in successive
positions of L until a syntactic operator appears. If the syuntaciic operator
is of order r, then its operands are to be found in the current last r posi-
ticns of L. The result of the evaluation of the expression specified by the
operator is then placed in the first of these positions, say position m, and
the process continued, with the next syntactic wariable being read intc posi-
tion m+l - or if an operator is next read, its operands will be in the positions
M—q+l througn m ( q is the order of the operator).

For example, if the string to be processed is Vi, V,, (¢1:l)D (@;:2)
the successive configurations of the list L will be

1), = v .

e

2) 1, = Vi,
G) L, =% ,1L

1]

v, .

# (Vo) . by application of &.

(L) L = ¢2(v1,¢1(v2)) . by appiication of @,.
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1.9 The Algebra of the Algorithmic Syntax

Let X; (i=1, 2 ... ) stand in place of the forms a , < A >,

{’< A >} , '( asb:0 )’ i,e., in place of recognizer (or comparator)
gymbols, iterated recognizer symbols and naming symbols, Then the standard
formulae beccme

X = X

. v X X

. 4 . X, from type (1) and (3) formulae

x, = 1 |x | 24 | \xy from the type (2) formilae.
The operations of this algebra are concatenation and ) . It is easily

verified that there are no commtative laws, but associative and distribu-

tive laws hold, thus
0K, F XX, x1|x2 # x2|xl
(XK = G (LY) RSB MR

xx) | @), n %)% = @x) | )

7

L

\;.)N
it

The distributive laws are important as they provide for possible sconomization.
One particular form of parenthesized-syntax notation is of importance

because (in this case only) the parentheses do not imply an internal subroutine

for the bracket. Tnis might be called normal-concatenated form, of which an

example is

X3 X5 (X l X, l Xs) x6x7(x8| Xg) X
The flow diagram for this is

m 5 AN TN iy [
®—® @ @@ 0 ) m
v 2 o

9

-—> False




The general form of the normal concatenated form is
MMMy ... A, where the A are either single symbols or are of the form
(B ‘ BQ| coo !Em ) where the B are also single symbols.

The other nommal form, example W=X; I (X2X3) I Xy, l ... Trequires all
alternates which are concatenates (except for a concatenate in the last
position) to be constructed as subroutines. The above form must be program-
med as Z = X2X3 s W=Xy l Z l X ... An exception is made for concate-
nated pairs, where the second member stands for a naming operation.

A1l these rules follow from the interpretation of the notation. For
example, consider {XlXQ) ‘ X3 , where X, is not a naming operation. This
program tests a string using X; ; if this succeeds, the X, 1is applied to
the next part of the input string. If X, fails, the string must be reposi-
tioned so that the alternate test X3 may be correctly applied., This can be
done only by mzking (X3X;) a subroutine (whose False exit will do the

repositioning).

Jdentity and Infinity symbols
The notation may be enriched by the addition of three symbols _/\_, \/
and oO , corresponding to comparators which have respectively
/L ¢ no false exit, does no* read the input,
-~/ ¢ no true exit, does not read the input.
o0: no exits at all,
The first two of these symbols are the identity elements for concatenation
and alternation. They allow certain transformations to be made in expressions

of the notalion, according to the rules given at the end of this section. For

example, ]
zelgXp | Xy = Xy¥p | Xp /b= X% | /D) by the distrivution law.

X /Lis a recognizer with its false exit joined to its true exit.




The following equations hold

x|V
VX
A|x
]
1
L v
x| -]
(+]
{3

g = § » > S

A

(A‘ A) {A}

17
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Examples

These examples are for the pseudo-machine with no output. They are

1/

comparable with the descriptions of ALGOL 60 .

)

(2)

Programs in problem-oriented languages are usually written as sequences
of statements; there may be sevaral types of statement.
<Program> ::= <Statement> {<Statement>}
<Statement> ::= <Statement 1> ,<Statement 2> ! <Statement 3>
This states that & program is composed of a sequence of statements,
and that there is at least one statement in the segquence. There are 3
types of statement., Each statement type would, of ccurse, be defined
in terms of simpler syntactic variables - and in the limit, in temms of
the alphabet. The application of <Program> to a string will determine
whether the string is an example of a text in the language.
Consider algebraic prefix notation using +, %, / as binary operators
and - as an unary operator. Then < E> is the recognizer for the
notation, where

<E> 1= <A>|<B>‘|<c>\<D>)<v>

<A> 2= - <E>

<B> :22= + <E><KE>

<C> = ¥ <E><KE>

<D> g

/ <E><E>
< V> 1is a recognizer for variables and constants.

This example shows the use of recursive definition, and it is easily

J.W, Backus et.al., '’Report on the Algorithmic Language;"’
ALGOL 60, Communications, ACM 3; p.299, May, 1960.
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shown to be non-circular, It may be written in normal concatenate form as

(3)

<E> ::= <A>|<V>|(+ |/‘* ) <E> <E>
where < A> ::= - < E>
The parentheses are used in this example as characters in the syntax
ianguage: 1t is assumed that they will not occur in the text analyzed.
Note that in this example the ordering of the alternates is not
important.
Normal Algebraic Notation
We repeat example (2) but now using the more usual infix notation,

with the operators as binary connectives,

<E> 1:= <F> [<s>} 3.1
<S> 3= < +=-> < T> 3.2
<F> = <T> l <S> 3.3
< #=> 33= + ! - 3.4
<T> 3= <A>||<V> 3.5

<A> 1= <V> <%/ > <T> 3,6

< ¥/ > iz= * ‘ / 3.7
The notation may be extended to include parenthetical notation in the
text by replacing < V> by < W> in 2.5, 3.6, and aducing two more
lines,

<W> s:= <V>i<(E)> 3.8

< {E)> ::

(<E>) 3.9
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Remarks

3.1 says that an algebraic expression is composed of a first part
< F >, followed by an indefinite number of subsequent parts < S >, which are
additions or subtractions of terms < T >. 3.3 says that the first part is
either a signed term < S > or an unsigned term < T>. By 3.5 < T > is either
a product—gquoetient form < A > or merely a single variable < V¥ >; it is impor-
tant to test < A > before < V>, =since < V > occurs as the first element in < A >.

Suppose the order of 3.5 had been changed. Then

<T> 1= <V> I<A>

ii= <v>-|<v> <% > <T> from 3.6.
= <V>F A l <HE/ > ST> by the distribution law.
te= <V > ) using the laws of the algebra.
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Part 2. Applications of the Syntax Machine

In the first part of this report the syntax machine was defined and is
properties discussed. Now we go on to discuss its application, and in so
doing we see what are the desirable and necessary properties of an assembly
program which can process the output from the syntax machine. The whole
translation will be a multi-stage process in which syntex analysis alternates
with assembly operations. The assembly operations construct new strings
which may then undergo syntactic analysis. How many times this has to be
done will depend on the source language. Whether the alternation of syntax
analysis end assembly is made over segmenis of the text or over the whole text
deperds also on the source language and on the amount of storage that may be

avajlable for intermediate strings.

I3

or example, any language that contains declarations will require several
alternations between syntax and assembly processes, Consider how names are

used for different types of numbers, e.g., fixed-point and floating-point
rambers, If the distinction between these classes of numbers is made by a
declaration, rather than by properties of the names themseives (e.g., by de-
fining integer variable names to be those that begin with I, J, X ) the declara-
tions must be used to form tables of the names of each class, These tables

must then be consulted to find the syntactic properties of the objects named,
whether they are integer variables, or are functions and so on.,

This table lookup feature is neot a property of the syntax machine as
described; it is proposed that this should be part of the assembly processes.,
Syntax analysis 1s, however, usually sufficient to separate names from operator
signs, since it is unusual for the syntax of names to change within segments
of a program. Thus, the strategy for translation would be

(a) Use the syntax analyser to ¢iscover the names and operator signs in

segments of the text.
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In the output there will be values of syntactic variables corresponding
to names, literal constants and other character groups. For example,
the name ABC will appear on the output from the syntax analyzer as

A, B, €, (#:3), where f will specify an assembly process, that might
replace 4, B, €, (@:3) by a '“co-ordinate name’’L , meaning that ABC

is the n’th integer-variable name. I_ will be constructed from tle
position of ABC in the table of integer names, and will be stored as

a single character that will be recognized syntactically in a later

use of the syntax analyzer as a member of the class 1I.

The syntax analyzer can then be applied to strings whicl now consist of
operator signs from the original text and co-ordinate names which stand

in place of the original names and literal constants.

These semantic considerations shall be deferred to part 3 of this report.

They are mentioned here so that it will be possible to use co-ordinate names

in this part without implying that these co-ordinate names are written in the

original text. We shall also be able to treat words like '’If,”’’ ’'’then,’’

Vﬂd

(o}

and other such words as single characters of the string analyzed. This

will simplify the exposition. We shall therefore, in this par%, now ignare the

interplay between syntax analysis and assembly.

2.1

(a)

Example 1, Addition and Subtraction of Floating-Point Numbers

Source language syntax

<E> = <F>{<35} 1.1
<F> e <V >|<C>[<s> 1.2 %
<S> s:= (+|-) <F> 1.3

For example : Vy #+ €y - Vo . 1.4

* < V3 >, <Ci> are recognizers for floating-point variables and

constants,
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(b) Syntax Program with annotations
<E> ::= <F> {<S>} **(0:v:0)”’ 1.5

<F> :1:= -<T> ”(cx.s;a:o)"l (+|./L)<'r> "’(CLA:a:0)’" 1.6

<S> ;:=<51>|<sz> 1.7

<8l > s:= +< T> °’(PAD:a:0)’’ 1.8

<82 > ez= -<T> ’°(FSB:as0)’* 1.9

<T> = <Y > <G> 1.10
Explanation:

The source language syntax defines valid strings to consist of a first
signed or unsigned term < F >, followed by an indefinite number of subsequent
terms < S >, which are signed. In step 1.5, the naming operation ’’(0:v:0)’’
represents an assembly operation that will put together the separate terms to
form the whole expression. These terms each generate an instruction in the
machine language by naming operations such as °’(CLA:a:0)’’ where '’a’’ specifies
ain assembly operation to combine the data portion of the naming operation, e.g.,
CLA, with the name or symbolic address of the variable or constant.

The application of the syntax program to the example 1.4 produces an
output string

v, , (CLA:a:l), C; , (FAD:acl) , Vo , (FSB:a:l) , (O:v:3) 1.11
By virtue of the step 1.10 the names of variables and constants are copied
from the input to the output strings: these are the only characters so copied.
The cheice cof machine inscruction is made in Sl and S2 from the signs + or =-
on the input string but these signs do not appear in the output, being replaced
by the corresponding machine instructions from the naming operations.

When the string 1.1l is assembled, twc processes occur
(1) Combination of a symbolic address with a machine instruction.

v, ( OP:a:1 ) - OP V . and
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(2) Combination of several segments of code (here 3 separate machine
instructions) into one segment.
81, S35 see , 3y, (0:vir) —> 55, ... S
Such assembly operations convert 1.11 into 1.12,
CLA V)
FAD Cy 112 *
FSB V,

which is in the target language.

2.2 Example 2. Extension of Example 1 to Include Storage Operations

Example 1 may be extended to include simple assignment statements,
so that statements like V5 =1V) + C -V may be translated.

We give two examples, where only one assignment of a value is made, and where
many variables may be assigned the same value, as in V) =Vp =V3 + V) .
(a) Single assignment.

<H> ::= <G> <E> "’(0:b:0)”’ 2.1

<G> =< V¥;> = ’(ST0:a:0)"’ 2.2
Here < G > represents the assignment part "'V =", Tha ’’="’ sign is not
transmitted to the output string, being replaced by the naming data. The
two parts of the assignment statement are < E > which is the < E > of
example 1, and < G >. The naming operation ’’(C:b:0)’’ will combine these
so that the assignment follows the calculation : it should always have

two arguments which are blocks of code to be interchanged.

* The meanings of the machine functions are:

CLA : clear the accumulator and place the quantity addredsed
in the accumulator,
CLS clear and subtract.
FAD add into the accumulator, using floating-point arithmetic.
FSB : subtract from the accumulator, floating point.

o
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(b) Multiple assigmment
<H> ::= <I> <E> *?(0:p:0)"" 2.3
<I> z2:= <G> {<G>:‘ **(0:v:0)"’ 2.4
where < G> is an in 2.2 . Step 2.4 says that there may be one or more
assignments, which are grouped by an assembly operetion ’’v’’ before

being interchanged, according to 2.3, by "’b.”’

2.3 Example 3, Arithmetic expressions using + ., — . % . / and parentheses

We use the IBM 709 as the target machine., In this machine, as in many
others, there are two registers concerned with multiplication and division.
One register. the AC, is concerned with addition and subtraction, and holds
the result of a multiplication; in it must be placed the numerator before
division. The other register, the MQ, holds the result of a division; in it
is also placed one of the factors of a product before multiplication. Corse-
quently, there are certain forms for which it is unnecessary to use intermediate
storage; for floating-point arithmetic these are
(a) + X¥¥/Z% ,,, , where multiplication and division alternate.
(b) + X¥¥/ ..., /UM + S + T ... , where multiplication and division
alternate in the first term, the last operator in the first temm
is * and then follows addition or subtraction.

(c) + (+Xx/¥%* ... ¥ + A ...) /U ... , where a parenthetic expression
will provide a result in the AC, which is the numerator for a
division,

For problems of this sort we must use the machine instruction program-
ming for the syntax machine. We shall see here the use of the marking and
sensing operations, M(X) and K(X), which allow notes to be kept of where inter-
mediate results are to be found at the various stages in the cbject program,

In devising programs of this sort, it is fruitful to consider the states of the

target machine as it would obey the program we wish to generate. There will be
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states in the syntax program corresponding to the states in the object program
being generated; these states in the syntax program will be the states 2% the
commencement of the program steps (or on lines in the flow chart). Sometimes,
a state of the syntax machine will also be represented by marks placed by M
orerations, for later sensing by K opeeations.

There are four principal states of the target machine called A+, A-, Q+
and Q-, when the AC, MQ, is holding positively (negatively ) the result of a
partial evaluation of the expressicii. Correspondingly named states exists in
the syntax machine. These four bit-symbols are used by M and K operations,
and are also used as labels in the flow diagram. An example of the use of this
notion of states in the object machine occurs in the scanning of the expression
'’ X¥Y+Z’'. This is analyzed by the syntax program as - (X¥Y-Z) since we can
only form products positively in the AC, and may be able to absorb the negative
sign on - (X#Y-Z) in a later operation, so that A+ (-X¥Y+Z) can be computed as
A- (X¥¥{-4), for example. The states that occur during the computation (and

during the syntax analysis are

text: ~X¥ Y +Z
states: Q- A- A~
output form: X Y -Z

and since the end state is A- , the object program will produce the negative

of the -X¥¥+Z , There will be a mark, A-, in the marker part of the push-down
list, =n that it can be subsequently recognized that a program to evaluate the
negitive ras been constructed., In general, the process brings negation from
the in _“¢ of parentheses to the outside; at the worst, therefore it will only
be necessary to provide a change of sign for any parenthesized expression, and
then only for the complete expression and not for any of its parts. Indeed the
only occasion when a negated result will be produced may be discovered by the

application of the rules:




1)
(2)
(3)

(4)

(5)

(6)
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A variable or constant has parity +1 .

A parenthesized expression has the parity of its first term.

If the first term of an expression is of product-quotient form,
its parity is given by rules (4), (5) and (6). Otherwise, the
parity is +1 .

If the first of the multiplication or division operators is "’"#'’,
then the parity of the term is the evaluation of the term
(including leading + or - signs) using the parities of the
components as values.

If division comes first, and the first numérator is a variable

or constant, then the parity is the evaluation of the term using
parities, taking that part to the right of the first *’/’’sign cnly.

Otherwise, proceed as in rule {L), but with '’/’’ instead of '’’’

If the parity of the expression is =1, its negative will be produced.

The target-machine instructions used are

LDQ load the M) register.

FMP multiply the number in the MQ by the number in the
specified address, The result appears in the AC.

FDH divide the AC by the rumber from storage: the quotient
appears in the MG.

XCA 1interchange the contents of the AC and MQ.

FAD add to the AC.

FSB subtract from the AC.

CLA clear the AC and add. STO store the AC.

CLS clear the AC and subtract. STQ store the MQ.

In the course of evaluation it is scmetimes necessary to store intermed-

iate results: for this purpose the assembly process following syntactic

analysis must be able to generate the address of a working location., The

syntaciic operator (D:c:0) does this, where D will be the machine instruction

required to store the result. If a parenthetical expression, say (A-B) ,




o
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requires the result to be stored, the corresponding output produced by the
syntax analyzer will be

eee » A, (CLA:a:1), B, (FSB:a:l), (STO:c:C), (0:v:3), ... .
(STO:c:0) will obtain a working space location, say W, and construct the
instruction STO W |, leaving it in the push-down list of the a2ssembler so that
when the operator (0:v:3) is processed it will have as arguments the three
assembled single instructions (in this case) CLA A, FSB B, STO W . (0:v:3)
assembles this into a block of code, placing the name of the result W in the
push-down list, Later W will be combined with a machine instruction by an
operctor of type (D:a:l), at which point W could be returned to the list of
addresses available for use as working space.

The syntax program flow diagrams follow., < E > is the recognizer for
arithmetic expressions; successful outcome will be marked in the syntax machine
push-down list by A+, A-, Q+ and Q- according as the result in the object
machine would be in the AC (positively or negatively) or the MQ (positively or

negatively).




E>—() ) 9A—>K(a+)

<V*>—-ﬁ}31

<V/+>——>é,1_

|

V> ——> A+
FJa.lse
+ A+
<XCK> C
L Y
® Lo
— I‘_m_ XCh>
fa i[ <FSBt>— ¢
M(Q+) M
M(A+)
K(A+)—> A+
K(IA-)—)Q_-_
i
Y
Y Lerror

Q=
Q- A-
e Q{CA>4[
+ —9—<FSB-> —
_ i <XCA> —
5 |
} =) o—<FAD->—e¢
Q-)

TRUE

ia




<FDH:>

<FMpt>

<FAD+>

<FAD->

<FSB+>

<FSB->

<V%>
<V />
</

<>

<STC>

<PAR>

<>

ti= <B> K(A+ }———M(A-}——vg

page 30

- <ei>—()) K(-) MQ ¥ i
v i-—-ﬂ(Q + "*(FDH:a:0)"’
—<PA.R>—-Q K(-)——MQATF l
l M(At *?*(FMP:a:0)’’
Ab—@*— M(a+) k(=) >*(FSB:a:0)"’
v M{A+) L **(FAD:a:0)""’

= —(O—<a—)) M(A-)- K(-) "’ (FSB:a:0)"’
@ M(A-) l *?(FAD:a:0)"’

= (O———<Par>—{( ) )——— M(a+) K(=) >’ (FAD:a:0)""
‘%_\ M(A+) l "’ (FSB:a:0)"’

- ___,<pAR>_O M(A-) K(-) **(FAD:a:0)"’
M(A-) L ’’(FSB:a:0)""

<> * UT(LDQiaz0)’’ V> 1= <> 77{CLS:as0)’’
<>/ ’’(CLS:a:0)"’ <V+> ;= <> '’(CLA:a:0)’’
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2.4 Example L, Assignment Statements using the Expressions of Ex.3

We treat assigmment statements like A=B= ... C= E where E is an expression
of the type < E>> of the previous example.
The source syntax is <AS> 2= <V; > = <ASL>

<AS1 > ::= < E> < AS >
At this point we could merely treat Ex. 4 in the same manner as Ex. 2.
A feature of this type of treatment for this case would be that we have to
decide which type of storage instruction to use according to the mode A+, &- or
Q+, Q- of the right hand side. In Ex. 2, it was possibls to know what type of
storage instruction was required as soon as the '’=’’was scanned. In Ex. 4 ,
this is not so. It could be assumed that the mode was A+, say, and scan the
right-harmd side. If the assumption were correct, the assignment statement
could be constructed. If not another assumption could be tried, and the
assignment statement re-scanned. This might have to be repeated before a
correct assumption is made.

In example 3 the necessity for multiple scanning is largely avoided by the
use of state markers: 1in example 4, to save multiple scanning we require new
apparatus, which may be a part of the assembly process rather than the syntax
machine, We must have some process of re-ordering so that the names of the
variables on the left of the "“="° sign may be combined with functions that can
be specified only after the right-hand side of the assignment statement has been
gcanned. Recall that the symbols copied from the input to the output‘tapes of
the syntax machine are in the same order on both tapes. For the statement A=E
we can most simply generate an output A,(E),F where (E) stands in place of
the string generated by the right-hand side, and will eventually in the
assembly process be represented by a single level of the assembly push-down

list. The symbol F stands for a syntactic operator, or set of syntactic opera-

tors which, because their generation by the syntax machine follows the generation
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of (E), can be made to depend on the mode of (E).

The primitive operator that we seek is a sort of interchange operator
"’(0:e:0)’’ of actual degree 2, but appearing with O as its ostensive degree.
To use it, and to preserve the well formed rature of the postfix notation at
all stages of iis processing we require a null syntactic variable A, . The
action of this operator is defined by the transformation

(®) , (E), (0:ez0) =~ Aj, (E), (D) ... 2.4
in the assembler’s push-down list. The null symbol A, will not occur as
an argument of all syntactic operators; it will occur as an argument of
(0:v:0) but not of (0:a:0).

The flow diagram for the assignment statement follows
<AS>  zz= Vs> = <ASD> 7 (0:v:0)’
<INT> ::= '’ (0:e:0)’’

ST ::= <IN ’’(ST0:as0)’’

(‘SI‘Q/\ ofel= (I_Nb ’?(Sm:a:o)’,
<ASI>  :2= \ﬁ%
<ASZ> K(A) S
féLil K(IQ)—éwj____) True
<ASZ> 2= ——<B> K(A+)
fail K(A- <CHS>—-»——M(A)—I
i
K(Q+)— M(Q)——"(0:v:0)"’
K(Q=)——<XC
<CHS> ::= ’7(CHS:a:0)"’
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If this program is applied to the assignment statement ''B=C/D’’ ,
the resultant output is

B, C, (CLA:a:1), D, (FDH:a:=1), (O:v:2), (O:v:l), (O:e:0), (STQ:a:l), (O:v:3).
When the ’*’Interchange’’ operator comes to be processed by the assembler, the

assembler’s push-down list contains (or refers to)

Position: m m~] m+2
Contents: B CLA ¢ (0:€:0)
FDH D

which changes by the ’’interchange’’ operator to

Position: m m+1 m+2
Contents: _11_0 CIA C B
FDH D

at which point B is now available as the argument for the operator (STQ:a:l)
which converts position m+2 of the push-down list to STQ B. The last operator

then completes the evaluation of the program.
2.5 Example 5

Simple Relational Expressions

Here we consider relational expressions such as X> 0, X > Y and so on,
where the general form is Ej Op E,, where E}, E, are expressions which have
values which are numbers and Op is a relational infix operator specifying a
condition that holds or does not hold between the values of E o, E2 . The
result of the operation is a binary val-.:, which we shall take to have the
following interpretation,
(a) 1If the condition of the relation is satisfied, the object program is

to branch.
(b) If the condition is not satisfied, the branching cperation is to be

ineffective.
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We shall consider only those relations where El Op E, is equivalent
to E ~E, Op O, e.g., where Op is thc relational operator =, #, >, > etc.
The object program that results will be a computation of E; - E;, followed by
a branching instruction. The program branches if the test is satisfied.

We shall consider first the case B, =0 , and then treat the more general
case, In anticipation of the next example, we shall provide a means of
complementing the relation during syntax analysis, so that, for example, X =Y
could be translated as if X # Y had been the text.

For the special cases, the initial translation from the original names

to the co-ordinate names

n

an be extended to recognize the diagrams =0 0 etc,,

translate them by single characters =, #’ etc. These characters will now
distinguish the special cases.

Then the syntax program for the recognition of simple relational expres-
sions is an extension of the pirogram for recognizing arithmetic expressions,
which is used to scan the arithmetic expression part of the relational expres-
tion, The appearance of the relational operator forces an exit from that
recognizer, whereupon the appropriate branching instruction can be added to the
cutput according to the tyre of relational operator, We shall give an example
for translation to the IBM 709 for the operators =’ and #’.

The syntax program follows: it uses a new assembly operator (D:d:Q)
which constructs a branching instruction with machine instruction code 0, and
notes in the assembler’s push-down lists that the constructed instruction lacks

a transfer address which must be filled at some later time in the assembly.




D
\n

<R> ::= —<E> @ K(A+)

K(ho)
K(£+)
K(&—)———4>4<KCA <TZE> "*(0:v:0)’’
@L) K(A+)
K(A-)
K —
; K((ll—)———‘—dCb—.,——dNb—-—— P'(0:vi0) "’
etlvc .
TZE 3= **(TZE:d:0) "’ *
TNZ ::= **(TNZ:d:0)"°’
XCA ¢3= **(XCA:a:0)°°

The complementary recognizer < R > is similar to < R> but with the
comparators =" and #° interchanged; it can therefore be constructed
with much in common with < R >,

For the general case E; Op Ep, the strategy for constructing a recog-
nizer is to analyze the expression E; as in example 3 until the relational
operator is encountered. At this point a chain of comparators can be used
o test for each relational operator, and make a mark in the syntax machine’s
push-down 1list using an M operation: the state of the recognizer < E >

(i.e., A+, A-, Q*, Q- ) may then be tested so that < E > may be entered again

# Two IBM 709 machine instructions have been introduced, namely
TZE,transfer control if the AC is zero.

TNZ ,transfer control if the AC is not zero.




36

(but not at its normal entry point) to complete the recognition and corres-
ponding program generation for the expression -Ej+Ep *. That is, the syntax
machine is programmed to read Ey Op E, and provide an output as if it had
been reading the arithmetic expression -Eq+E, . This is achieved by entering
< E > for the second time at the position (in the flow diagram of Example 3)
A- {or A+ , Q+ , Q- ) if the output state of < E> on its first use had been
A+ (or A~ , Q- , Q+ respectively). On the exit from < E> for the seccnd
time it is possible to add the appropriate branching instruction, since the

specification cf the relational operator has been preserved by a marking

operation,

# For this process to be effective, the expression E, must be signed;
this necessary sign can be added in the preliminary scan, just as
the characters =0 were replaced by =" for the simpler case.

Thus X=Y should be transformed to X=+Y
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<R> 1= <®RD> K(=) TZE>
x(l-f') <INZ>
Kl!>) K(a+) TGR>—] 1)
— TS —-
KC) K(a+) <TGE>
l e
k(L) K(A+) <TLE>—
<TGE> —]
K(<) K{A+) <TLS> —|
<TGR> 7?(0:v:0)"’
<H > ::=—=<E M(=) K(A=)—— <BA(+ > ——
M(#)— K(&+)—<E(A->—
) K- ——<E(er >—]
——— M) K(Q+) <E(Q-P
M(<)
M(<)—
<
K(a+) M{(A-)—
K(A-)———M(A+)—L— True

Notes 1) TGE 1s a subroutine to construct on the cutput tape an
instruction to branch if AC is greater than or equal to
7zero., To write this we require an assembly operation not
yet introduced., In example 7 we return toc this matter,

2) The other subroutines have obvicus significance. The
subroutine <E(A+)>is the subrcutine < E > of example 3

entered at the point labeled
Similarly for the others.

Program for simple relational expressions,

A+

o

2)




2.6 Example 6, Combinations of Relations

In this example we treat combinations of relational expressions using the
Boolean operators “‘and,’’ '’or’’ and "’not.’’ In so doing, we introduce a
novel algorithm for the analysis of logical expressions by use of the syntax
machine.

In examples 1 to L we were translating programs which did not have brancn
points in their control sequencing so that the object program was obeyed
sequentially, In example 5, we had object programs with a branching cperation.
Now we combine programs that have branching.

We define a program block as a block of object program which is an assembled
single instruction of object code or a block of code assembled from program
blocks. Program blocks may be ccnditional, when they have one skip exit in
addition to the exit of normal (sequential) sequencing - or they may be uncondi-
tionai, lacking the skip exit. Within a conditional program block there may
be many branching operations, but lhe block as a whcle has cne skip exit.

Program blocks may also be labeled, but by one label only.

Fer example 6, we need three assmebly opevaicrs for combining conditional
program blocks. These are (Osv:0), (O:w:0) and (0:x:0), The first of these,
(0:v:0), has been used before without all its properties being announced; it
combines those program blocks which are its arguments into one program block
whose skip exit is the common skip exit of the argument blocks, If ail the
arguments are unconditional, the result is aiso. At most,one of the arguments
moy be labeled, which label (if any) is the label of the combination.

The operator (0:w:0) has two operands, which are program blocks. If (4),
(B) stand in place of program blocks, the block (A), (B), (0:w:2) is the ccmbina-
tion of the blccks (A), (B) (in that sequence) with the skip exit of (A) joined
tc the label of (B). The conditionality of the result depends on the conditiona-

lity of (B): the result is labeled by the label of (A).
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The third operator is a labeling operator (0:x:0), which has one operand,
which must be ar unlabeled program block. It provides a label for the block
so that a transfer of control could be made to skip over the block.

The diagrams for these operators are

—
i

5
]
skip exit skip exit \4
A, B, (0:v:0) A, B, (0:w:2) A, (0:x:1)

They provids the mechanism for realizing conditional expressions. For example,
if p(A) 4is the proposition that the skip exit is the actual exit from 4 ,
when program A is run, then

p(4,B,(0:vz2) = p(a) v p(B)

p(4,B, (0:x:1), (0:w:2)) = p(A) A p(B)
The operators are chosen so that the normal exit from the first pregram block
is the normal entry to the secord program block. Thus the program blocks may
be assembled in position before the connecting operators (0:v:0) and (0O:w:0)
have been reached. Together with negation, these operators enable binary
decision programs to be written for any Boolean function. Moreover, if the
logical operators = and # are not used, the Boolean function can be
re-written by changing the operators only, without duplication or change of

ordering of the predicates or program blocks.
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We are now in a position to write a translation algorithm for the

source language string defined by

<CR> ::= <CL> or <CR> |<01>
<Cl> ::= <C2>and <Cl> | <02 >
< 02> ::= < R>inot <R> | (< CR>)

where R are simple relations of the form Ey R E, as treated in the
previous example.
The analysis is made in terms of the operators (0:v:0) and {O:w:0),

or rather in terms of the corresponding logical operators. Because the input

text is written using ’’and,’’ but the analysis is made in terms of '’w,’’ we

require complementary pairs of recognizers so that terms like ”Hl and Hz”

may be translated to ’’nct Ry w R,”’. In this example we have to apply the

complementary recognizer to the first operand so that "’Ry’’ is translated as
if ""not R;’’ had appeared on the input string instead of ”Rl". The use of
De Morgan’'s rules also aliows the ’'not’’ operarions to be passed inside

parentheses so that in the translation they apply only to the simple relational

expressions.

The syntax program < CR > follows




<CR> ::=—<ClL> (6r——< CR > **(0:v:0)"’

True
<CR> ::= <Cl >————(§Ei—— < CR >"7(0:w:0)""
—> True
<Cl> ::= < ? > True
< €2 >— and < Cl >—>’’(0:w:0)""
1 _
error
<C> cez= < C2 > False
True
7~ N\

<6§.> H \noyib—_?—(\ CR >—@_—"
! L <R>—eeod 35True

Syntax Program for Combining Relational Expressions
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2.7 Example 7, Simple Branching Instructions

We deferred from example 5 the matter of how to write certain branching
instructions which have no counterparts as single instructions of the machine’s
code, For example, on the IBM 709 to test that the contents of the accumlator
is greater than or equal to zero, we must first test for zero and then for
positive accumulator. This is because the number representation is by sign
and absolute value, and the branching instructions operate on the sign ( TPL =
tranafer on positive or TMI = transfer on minus) or on the absolute value of
the accumulator (TZE = transfer on zero or TNZ = transfer if not zero).

Thus to provide a branch on the accunmlator being positive or zerc we
require a TZE instruction followed by a TPL instruction both with the transfer
address. The assembly operators introduced in the last example now make it
possible to write segments of the output string that correspond to tests for

the inequalities in the scurce lan e, as follows
g :

Scurce languags Juipul, string translation
> (TZE:d:0) , (TPL:d:0) , (Osx:1) , (O:ws:2)
< (TZE:d:0) , (TMI:d:C) , {Osx31) , (0:w:2)
> (1ZE:d:0) , (TPL:d:0) , (Osv:2)
< (TZE:d:0) , (T™MI:d:0) , (O:v:2)

We can now construct subroutines to provide these output strings. For
example the TGR subroutine, to test > , in axample 5 (second part), may be
written

<IGR> 3= <TZEB> < Ti> “'{0:w:0)"’ , where
<TZE> ::= "’ (TZE:2:0)"°

<TL> se= <FPI>  °’(0:x:0)°°

<TPL> s3:= ' "(TPL:d:0)""

The subroutine for providing a greater than or equal test is




<TGE> , where
<IGE> ::= <MB> <IPL> '"(0:v:0)”’
and <TZE> and <TPI> are the subroutines described above,

2.8 Example 8. Iteration Statements

The purpose of this example is to introduce another syntactic operator
(or assembly operator) of order 2 which will be useful in the construction
of program loops. Ccnsider two programs A , B where A ard B stand for
the syntax machine output for these programs. Program A must be a labeled
program and pregram B must be conditional. Then the operator (0:y:0) applied
to A, B forms a combination of A and B in that order with the skip exit

of B connected to the labsled entry point of A , as shown below.

C = 4, B, {0:y:0)

he result program C may itself be conditional, if A was conditional,
or labeled if B was labeled. In other words C has the skip exit (if any)
of A, and the label of B (if any).
As an example, consider an iteration statement whicn in the source language

congists of three parts concatenated e.g., & B C , where
4 represents an initialization of variables (i.e., iterates).
B represents the calculation of new values of the iterates

from the old.
C represents an end test for the iteration,

so that the diagram for the program is to be

Pl
<

B —>

(9]

?
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Clearly C is a conditional program and A must be labeled: the postfix
representation is either
D= A, (0sx:1), B, (0:v:2), €, (0:y:2)
D= A, (0:x:1), B, C, (0sv:2), (O:y:2) ees  2.8.2
according as B dis first combined with A or with C. In 2.8.1
B could be a conditional program, but not labeled: in 2.8.2
B must be unconditional but may be labeled.

We refrain from giving further examples, as we now go on to consider the

properties of the translations that have been illustrated in the preceding

examples,

Remarks on Part 2

In examples 1 to 8 we have shown various examples of translation that the
syntax machine and a suitable post-assembler can make. We now gather together
some of the salient features.

The principal property of the process is that the ordering of the variables
is not changed by the translation, except by the re-ordering of arithmetic
expressions by parenthesizing and by the interchanges made by the operators
’b"" and ’"e’’. Example L shows how the role of the interchange operator '’b’’

»

can be taken over by the operator '"e’’, so we may consider '’e’’ only. The

s

properties of *’e’’ depend on the assembler.

The simplest assembler would be one which assembled directly into machine
code and placed each instruction into its final position. Thus ’’e’’ couid be
used to effect the transformation 2.4.1, i.e.,

(D), (E), (0:e:0)> Ay, (E), (D)
only when (D) stands for the address part of an incomplete machine instruction,
where (D) is stored directly in the assembler’s push-down list and not merely by

reference to an assembled set of machine instructions already located.
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We hcpe to show in part 3 of this report, how this condition on transla--
tion may be relaxed by using the mechanism of declarations.

Another property of the object program is that no advantage has been taken
of common subeicpressions, to economise in the object code. It is the author’s
opinion that the search for common subexpressions in algebraic formulae is a
simple matter for the composers of programs and should be left to them rather
than to the mechanical translators if it is desirable to have a quick translation.
The same may be said about many other forms of economization which could be made
unnecessary by simple rephrasing of the source program. Example 3 shows, however,
ihat economization in the use of aritimetical registers is possible,

The syntax machine can differentiate many special cases of the source-
language text where the properties of the target machine allow the use of program
tricks., With some of the extensions to be proposed in part 3 of this report,
it becomes possible to recognize many special cases in the source language that
are of common occurrence, and to provide corresponding segments of machine code
(or macro-instructions).

The program combination operators v, w, X, y provide a quite powerful
notation for combining programs with branches; in effect they provide a method
of writing = wide class of branched programs without using explicitly written
labels. For example, in the iteration 2.8.2 of example 8 the iteration part B

could be entered from some program other than the initialization program A.
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Part 3. Declarations

Declarations are made about symbols used in the source program and alter
their meaning. They are used to specify which names apply to the various
classes of objects in the program, e.g., which are names of floating-point
variables, fixed-point variables, functions, procedures etc. They may also
be used to define new functions in terms of existing functions, or to define
symbols which stand in place of whole segments of text. In addition the
mechanism of declarations may be used intemmally in a translator.

We distinguish between two occasions where Declarations affect the translator,
when a Declaration is made and when a Declaration is used. For example, if
we wish to use the name ’’ABC’’ as the name of a function, it must be declared
to be the name of a function. This declaration may be explicit, when a segment

of the source text says explicitly that ABC is a function, or the declaration
may be implicit, when ABC appears in
a declaration about ABC is being made as a part of another declaration, as for
example in
ABC(X,Y) = X sin (Y),

which definition might be given without any explanation in the source language,
because this form of expression could oniy be what it is, a detinition of a
new function whose name is ABC.

The declaration is used whenever the objects named in the declarations
are used elsewhere in the text, as for example if we w e the function ABC as

part of an arithmetic expression. e.g.,

Z=X + A9C (X+y,w)




L7

We shall discuss three types of declaration
(1) Declarations about the syntactic properties of names.
(2) Declarations which define substitutions, +here a declaration is
made that a symbol stands in place of a string of symbois.
(3} Declarations about substitutions in which, when substituticn
is made of a string for a symbol, the string is modified by
parameters,

2.2 Declarations about Syntactic Properties

An example of a declaration about syntactic properties would be
Integers, A, B, Cl

which delares the names A, B, C1 to be the names of integer variables, We
regard the properties of names as syntactic properties, because in the analysis
of statements we must distinguish between the various types of variable, and
between the names of variables and the names of functions., Our intention is
to replace the names like A, B, and Cl by symbols like Iy, Ip and 13 which are
so constructed that the syntax machine can recognize them as the names of
int.eger variables. The subscripts could have uses in storage allocation.

However , we must first recognize declarations before we can act on them.
Tc recognize such declarations and distinguish them from other forms of state-
ment we assume that the Syntax Machine is analyzing programs statement by
statement . Let us suppose that there are sewsral sorts of property for which
we wish to make declarations about nams. We can start the scan of statements
by checking whether any of the leading words are signals for declaratiorns., A
chain of comparators will do this. For example, if we have the declarations
about integer variables, functions e%c., we could use the following syntax

program < SD >,




where

> 2= integer [% lJﬂJ < ZI> ''(0:m:0)"’
<ZI> ::= < Il > {<zn>}

> = < ZIZ > l i

<ZI2> s:= L {g} **(I:k:0)"’

and < DF > is similar to < DI > but begins with a chain of comparators for the
word, “’Functions’’ (or its singular), and the subroutine corresponding to < ZI2 >
is named by the operator '"(F:k:0)’’. < ND > is the syntax program for state-
ments which are not declarations. L 1s a comparator for letters of the alphabet
and NL is the comparator for letters and mmmerals. U is a comparator for all
characters but the statement ending punctuation.

The syntactic operators are

'’(Q:mer)’’ Return control to the syntax machine from the assembler,
resetting the assembler push-down 1ist so that the next
symbol placed there will be in the same position as the
first symbol used in this use of the assembler.

*’(Dak:v)™’ This is a combined table lookup and table constructing
operator. It constructs and uses a table of equiva-
lences between external and internal names. A possible
definition of this operator might be:

(a) If D=0 and the exterrnal name is not already stored,
store it in the proper place and generate a corres-
ponding internal identifier, placing it in the
corresponding position of the table and in the
result position of the push-down list.

(v) 1If D#0, find the place in the table for the
external name and in the corresponding position
for the internal name place a generated symbol Dj,

where any name sc generated may be recognized by

a comparator as an internal identifier of class D.

Place D; in the push-down list.

(¢) Otherwise, look up for the extcrnal name and
place the corresponding internal name in the
result position of the push-down list.

In the use of this operator in the making of declarations,
only operation (b) would be used. Part (a) of the operator
makes it useful for dealing with the class of names about
which no declarations are made., A possible method cf storing
external names is discussed by Williams (Comm. ACM 2, 6. p21
June 1959),
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In the program < DI > and corresponding programs, the return from the
program must be mzde in a special way; When the operator ’’{(O:m:r)’’ has been
written on the output string from the syntax machine, the assembler is then
entered to evaluate the part of the output string geperaﬁed by the subroutine
< DI >; afier the evaluation process, control returns to the syntax machine
which is set soc that further output overwrites the string which the assembler
processed.

If the program < DI > is applied to the example at the beginning cf
this section the syntax machine produces an output

eee » A, {Izk:1), B, {I:k:l) C,1,{I:k:2), (O:m:3)
whose evaluation by the assembler will store the external names and generate the
corresponding internal names.

In statements which are not declarations, external names mu3st be replaced
by their internal name equivalents. This may bz done by the program which we
shall discuss in the next part where we show how statements may be handled by

a similar mechanism to substitution declarations.

3.3. Substitution Daclarations

We now consider the type of declaration where a string in the source language
is given a name, which may thereafter stand in place of the string. There are
two sorts of replacement which we might consider; replacement in the input string,

and replacement in the output of the syntax machine. The latter is what we

shall consider as the medhanism is useful in dealing with non-—declaratory statements.

We take, as an example of this sort of declaration,
Let Bl := A=B+C
by which we define Bl to stand in place of the statement ’’A=B+C’’. As before
we can write a program with a chain of comparators that check the presence of

the word ’'"Let’’ before proceeding in the manner particular to this type of

I T I
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statement. The program is called

<DL> ::= <IF>: = {< DL >} *?(0:1:0)""

< IdFL > ::= L {Q:} **(F:k:0)"’ , <IdF> ::= <IdF1> ’"(0:3:0)"°
< DL > ::=<Id>J|U ‘

<Id> = L {'L_? »?{0:k:0)"’

where U is the comparator for all characters except emd of statement
punctuation.
When this program is applied to the example the resultant string is
eeey, B, 1,(F:kz2), (0:jsi), A,(O:k:l), =,B,(0:k:1), +,C,(0:k:1}, (0:izh)
and because of the special treatment of subroutine returns associated with the

tring is now evaluated by the assembler. Whai is to

(2) The externzl name Bl is processed by the operator (F:k:2), with the
result that the internal identifier F(BlL) is placed in the push-
down list.

{(b) The operator (0:j:1) is next encountered. Its cperand is the
internal name generated in (a). Its purpose is to set up a table
of absolute addresses where the processed string form of the
declaration will be stored. This address will be that occupied
in the example by the character B. The table of locations of
processed strings then contains F(Bl) and L(B) where L(B) is the
location of the first character of the string in process. The
result in the Push-down list is a null symbol A .

(¢} The k operators replace A, B and C by the corresponding
internal names.

(d) The operator (0O:i:r) then sets the syntax machine to work on the

result in the assembler’s push-down list which is now

°°°s—-r\-op ¢A: =y ¢Bs +, ¢Qv (Oxigé)

U
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where ¢A is the internal rname of A, and, of course, is now a single
character by which the declared syntactic properties of A may be
recognized. The syntax program starts at ¢A‘ The operator (0:i:6)
left in the push—down list now acts as an end of statement mark.
When the syntax machire is applied now it analyzes the string by the type
of program of which examples were given in the second part of this report.
On completion of its work%b;rogram exits via a special true return to the
syntax program that called < DL >. This ahnormal return switches the input
of the syntax machine back to the original string. This abnormal return situa~
tion can be anticipated when control left the syntax machine for the assembler,
and the position of the input string stored.
The processing of non-declaratory statoments can be done in the same way
except for the treatment of the nsme of ihe string. The syntax program is < ND >,
<M> ::= <NDL> [<Dn >} " (0si:0)""
< KDL > wz= "T{0:ma0)”
and < DII > is as before,
1f < ND > is applied to the string '°A=B+C’’, the first output string is
veo, (02n:0), A,(0:k:1), =,B,(0sksl), +,C,(0:k:1), (0:1i:6)
The processing proceeds as before except for the action of the operator (U:n:0),
which is to generate an internal formula symbol Gr &8 its result. Otherwise,
it acts like the opefator (023:1) in placing the internal formula symbol in the
table of processed siring locations. The result is
evo s Gpy @a, =, Pgo +, @, (0:i26)
When this comes to be processed by the syntax machine, processing starts at the
second symbol as before, since the result of the operator {0:i:6) placed in the
push—down list is merely Gj.. As a consequence, the push-down list of the assem-
bler contains a list of symbols, one for each statement processed. For declara-

tions this symbol is the null symbol; for other statements it is the intermal
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formula symbol. When all statements have been read the string in the assembler’s
push-down list stands in place of the program, which now exists in corresponding
order as segments cn the output string of the syntax machine. These segments all
erd with a punctuating symivwl that was added by the second pass of the syntax
machine.

The assembler also has a second pass, which is an assembly to machine-
language code, It is here that thc substitution of strings for internal
formulae symbols and declared string symbols occurs, Unless a ''Load and Go'’
type of assembly is required this second
assembly would be done when the compileda program is loaded. Actually the loading
process would also include a syntax analysis since it is very easy to incorporate
corrections at load time by replacing whole statements. This would bi?iii:ing a
declaration for the corrected statement; using the internal formula symbol fcr
the string to be corrected.

The expansion of internal formulae symbols is done by the assembler switch-
ing its input., This may be explained as follows.

Suppose that the assembler is reading from a string Sl and finds internal
formula symbol., The table of string locations is consulted to find the absolute
location of the first symbol of the string. The assembler takes this next,
noting that it has to return to the criginal string when the end of the
secondary string is reached. Clearly this process is recursivs, if all the

return addresses are kept.

3.4 Declarations about Macro-instructions

An important class of declarations is that in which macro-instructions
are defined by a declaration such as
Macro F(X,Y,2) = X(Y+z)

where the form on the left, namely P(X,Y,Z), is shert for the expression on the
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right. The macro-instruction is different from the closed subroutine in that
every time the short form is used in the program a modified copy is placed in the
appropriate part of the target program. In the definition, the parameters ( i.e.,
X,7,Z in the example) are dummy symbols.

There are two ways in which we might approach this problem, by using substitu-
tion methods on the input string of the syntax machine or by using substitution on
the output as in the previous section. In the first methcd we would consider macro-

instructions tc be merely shortened wawe of writing

e
------ = - VAl s

S GI-ine source language

with the expansion to full form being made in the input string, so that, for

avame) o o A D o b o w

ample, writing F(4,B,0) is completely equivaient to writing in its place the
expression. A(B+C). This method has the advantage that we do not need to make any
declarations about the modes of the variables (i.e., whether the variables are
integer variables, floating-point variables etc.). The second method is more
appropriate for large sections of a program, such as the ALGOL procedures. Here
we deal with Method 1.

The macro declaration is processed as follows.

On the first pass of the syntax machine the word ’’Macro’’ can be recognized
and program control switched to the program for processing the rest of the decla-
ration. The program scans the text and produces a string whose evaluation by the
assembler will leave the follcwing patternm on the output string. For the example
"’Macre F(X,Y,Z2) := X(Y+Z)’’, the pattern is
Cell address n n+l n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+l0
Contents 00 0 @ n ( n+vl + n+2 ) ¢

The overlined symbols have a special effect on the syntax machine. To
distinguish them from normal symbols, they might be negative. The first three
cells are to hold the names which will be the marameters of the macro when it is
used : the symbols a and a cause switching of the input and output of the

syntax machine; the symbols like n are address symbols, in the sense that when
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n is read by the syntax machine, it acts as if it were reading the symbol from
the cell whose address is n .
The program for making the dezlaration is < MD >,
<MD> ::= macro <MDl> (KMD4L>) <MDLO> <MD 7> °'’(Q:m:0Q)”’
< MD1 > :

< MD2 > ’"(0:p:0)"’
<MD2 > ::= < MD3 > "'(0:3:0)”’
m:} 7t (Mak:0)"’
C

< MD4 > ::= < MD9 > {<MD5>}

A
g
vt
V
i
It

< MD5 > ::= , < MD9 >

L {E} “*(0:k:0)"’
<MD7 > 5= < MD8 > {< Mne>} **(g:5:0)""
< MD8 > ::= < MD6> ’'(0:r:0)’°

< MD9 > ::= < MD6 > ’’(0:q:0)’’

A
5

=1
o
Vv

[

!

s = "(@:s:0)""

The application of MD tu tie example will yield an output string: -
eee, Fy (Mskel), (0:3:1), (O:p:l), X, (O:k:1l), (O:g:1), Y, (0:k:1), (0:q:l)
, 2, (0:k:l), (0:q:1), (g:s:0), X, (O:k:l), (O:r:l), (,Y,(Osk:l), (O:r:l), +

,

, Z, (0sks1), (O:r:l), ), (0:s:6), (0:m:3) *

The new assembly operators are: -
(Osp:l) switch the output from the assembler to the output list.
This ensures that the coded definition of the macro is placed on the
output string. This operator also clears out a temporary table used
by the g and r operators.
(0:q:1) In the temporary table mentioned above place the internal name (which
is the operand) and the absolute location in which this was stored

at the time (0:q:1) was applied to it.

% as with other examples it has been assumed that the input text
contains no spaces. This simplifies the exposition.




(0srsl)

(0:5:0)
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The cperand is an internal name. Look for it in the temporary table
and if it is found there, replace the operand by the absolute address
noted against it in the temporary table; otherwise the operator has no
effect. The purpose of this operator is to replace the parameters by
an address referring to the position in which the actual parameters
will be placed when the macro is used.

No matter what the operand count of this operator , write the

character from the data field in the place occupied by the operator.

The evaluation of the output of the first scan of the syntax machine causes

(1)

(2)

(3)

(&)

The name of the macro to be written in the table of processed strings
together with the address ( n in the example) of the processed macro
definition,

The p operator then switches the output from the assembler to the
output string.

The g operators then take note of the formal parameters in the
definition, so that the r cperators can replace them in the processed
etring by the absolute address of the location to which the internal
names of the parameters will go when the string is used,

The s operator writes a mark ¢ which will switch the input of

the second scan of the syntax machine when the macro is used,

To use such a macro we have to make some extensions to the syntax machine,

so that the input can be switched from one text to a subsidiary text and then

returned to the original text, The symbols that are special in this respect are

symbols of class M denoting internal macrc names, the special symbols §, g

written by the operator s , and the absolute addresses written by r operators

in the processed form of the macro defimition.
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Now consider what happens when the cyntax machine scans a test in which the
internal symbol H? appears. This would not be in the original text so we are
talking about the secornd pass of the syntax machine when its input has external
names replaced by internal names, Let the original source text contain
"'F (A,B,C)’" where F is the macro of our example and 4,B,C are names of varia-
bles or constants. Then the corresponding string within the input for the

second pass of the syntax machine is Mg, (,%,, ?p ¥c,), where the commas are

used to separate the characters of this string, and the characters ¢A etc. are
the internal character names of A etc.

A special comparator is used for symbols of class M 1i.e., names of this
type of macre, If such a symbol is recognized by a comparator, the output of
the syntax machine is switched to the address where the macro definition begins.
The syntax program then fills the parameter cells with the names of the parame-
ters used here, namely ¢A’ ¢B and ¢C . When these have been read the syntax
machine uses yet another special comparator to check the presence on the current
output position of the symbol @ and if it is found the input of the syntax
machine is switched to the next position of the macro-definiticn list (cell n#+i
in the example), and the output list of the syntax machine reset to its state
before the M symbol appeared.

The syntax machine now scans the rest of the macro definition until the
symbol @ appears when the input of the syntax machine is switched back te
what it was before the last M symbol appeared. By the usual technique of
push—down lists it is simple to meke these macros recursive,

The syntax program for the use of macres is

D—O

errar

N
y 7
where the comparators M and @ are the special comparators mentioned in the

text. This should be placed in all parts of a syntax program where an M

might be under the scrutiny of the syntax machine,
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Part 4. The Assembler

In parts 1, 2 and 3 muech has already been said about the assembler.,
We consider now only one part of the assembler, that used to assemble postfix
strings to target machine language, using the operators '’a’’, '’¢’’ and ’’d’’

which form single machine instructions and the operators ’e’’, "’v’’, *’w’’

*’x’” and *’y’’, which manipulate program blocks.

The assembler for these operators is best considered separately from the
assembler for other operators since the push-down list requires four registers
ARr, BRr, CR, and LR, on each level r . AR, holds the names and operators
from the postfix siring being assembled. BR, holds the assembled forms of single
instructions provided by the operatars *’a’’, ’’¢’’ and ’’d’’. CR. holds an
address which refers to a conditional machine instruction or a conditicnal pro-
grac hiock. It also helds a negative sign ®# if the level r is holding a
single machine instruction in BRr. LRr holds an absolute address which is
a transfer point generated by a label. There is also a location counter whose
contents L give the address where the assembled instructions of the program
go when transferred from the push-down list.,

For this assembly it is assumed that the 'k’ operator which provided
internal names generated the subscripts on these names by incrementing a counter
sc¢ that the subscript is a relative address for each variable in the block for
wariables of that type. The final values of these counters (one for each class
of variable) can be used to provide base addresses for each block, from which

the absolute addresses of any variable can be constructed by the operator ’’a’’

% We assume that each register of the push-down list has a sign
position and a value position, so that representation is by
sign ( + or — ) and value,
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4.1  The Operator, (D:a:l)

When this operator appears in the position AR, the internal name which
is its operand is in ARh 1 The absolute location corresponding to the internal
name is combined with the machine instruction specified by D and the result
aced in BR
plac n-1

machine instruction. The push-down list level counter is then set to n, so

- CRy 3 is made negative to shew that BR _y contains a single

that the rext item is brought into ARh, If the operand was the name of a

working location send it back to the list of working spaces (see belcw)

L.2 The Operator,

This operator combines a function specified by D with a working-space
location, Associated with this operator and with operator '’a’’is a list of
used working spaces. If this list is empty then ’’¢’’ must construct the
name of a working location which it can do by incrementing a counter whose
init.ial contents was the address of the beginning of a block of starage allo-
cated for working space., If WS 1is internal name of this working-space
variable, (selected from the list, or constructed) then the result in the push-

down list is

Aﬁn WS

BHy,

D:L(WS) i.e., the machine instruction with function D and
address L(WS) which is the absolute location
corresponding to the working space name WS,

CR, 1is negative.

where the operator (D:c:0) was in AR, . Note that the operator '’c’’ acts

lake the operator ’’k’’ in the production of an internal name. We want an

internal name to appear in AR, because it will subsequently be used as the

operand of an '’a’’ operator. The next item to be read intc the push-down

list must enter level n+l.
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4.3 The Operator, (D:d:0)

If this appears on level n in AB.n then we have in the result
BR,

CRn = ~n to show that there is 4 machine iamstruction in BP.n.

D:0 the machine instruction with zero address.

The next item to be placed in the push-down list must be placed on level n+l .

L.% The Labeling Operator , (O:x:1).

This has two cases accerding as the operand is a machine instruction
within the push—down list or is a block of code assembled in its final position.
Case 1 ¢ The initial configuration of the push-down list is

AR

ER, holds a machine instruction
CR, is negative

LR, should be positive

AR (Osx21)

This case is recognized by CR, negative, I_.R1 should also be positive,
indicating an unlabeled instruction. The action of the labeling opertor in this
case is to mark level n on the push-down list by making LRn negative,

Cagce 2. In this case CRn is positive, LR, 1is positive and contains the
address which will be the value cof the label if one is required. This is
furnished by the the operators "’v’’, "'w’” or "’y’’. The action is merely to
make LHn negative.

In both cases thie next item is read into position AB‘ml o




60

4.5 The Operator, (0O:v:r)

Suppouse that this operator appears in ARn+r 5 then its operands are in
levels n through n+r-l of the push-down list; they may be machine instruc-
tions still in the pushmdowi7?§ecognized by the CR part of the level being
nezgative) or they may be blocks of machine code already stored.

The first action of the operator is to check that there is at most one
labeled operand, by testing all the LR positions of the operands; those levels
that are labeled will have negative LR .

Then the operands are taken in order and process A applied to t-ose that
are single ansiructions still within the push-down list, Pfocess A is commeon
to operaters “'v'’, "’w’’ amd "’y’’ ; it places the single instructions on their
final positions in store, using L which is incremented by 1 whenever single
instructions go to the store. If a conditional instruction is stored firom the
push—down list in location L then L is copied into the CR positisn and L+l
is copied into the LR position. In both instances the signs describing condi-
tionality and labeling are preserved. At this point all the sperands have been
stored in their fimal positions,

Now we must connect any skip exits from the operands. A single machine skip
instruction will reside in its final pcsition with its transfcr address zero,
and the corresponding CR position will point to the location of the instruc-
tion., For program blocks the CR position will point to a location holding one
of the conditional instructions in the block. If the transfer address here is
zero, then this is the only conditional instruction in the block that contributes
tc the skip exit. If the address of the conditional instruction is non-zero it
is pointing to another conditiomal instruction contributing to the skip exit.
Thus, the CR contents is the first of a chain of addresses ending with

address O , which specify locations of instructions contributing tn the skip

exit, (except the last, 0).
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In the "'v’’ operator, these chains are linked together into a single chain,
which now shows which are the conditional instructions requiring transfer
addresses, The first member cf this chain is stored in CR;, . In LB, is
stered the absolute value of the label if any of the operands were labeled.

As usual LRn shows labeling.

4.5 The Operator, {(O:w:2)

If any of the operands are single instructions then process A is
applied to them, reducing the operands to refer to prograr blocks in their
final position. The first and second cporands are then checked for condi-
tiomlity and labeling respectively. Then process B is applied to link the
skip exits from the first operand with the label of the second operand, by
proceeding down the chain of locations in which are to be inserted the address
value of the label. Finally, the conditional information CRn+l for the second
operand replaces CR,; to form the result on level n. The rext item is to be

read into level n+l.

i.7 The Operator, (0:y:2)

The action of this operator is almost identical with that of (Q:w:2) but
the label from the first operand is used with the chain of locations of condi-
tional instructions of the second operand.

In the operators "’v’’, "’w’’ and '’y’’ it may be necessary to provide a
label value in anticipation of the use of ’"’x’’ to label the result. If the
result of the operation is an unlabeled block and process A has been used to
insert single instructions in their final locations then the LR position of
the resvlt should hold +,L+l , where L was the address of the location last

used by process A.




L.8 The Operator, ({(0:e:0)

If this operator appears in ARn ,» then the data on level n-2 of the
push-down 1list is placed on level n , and thes registers on level n-2 set to

zero to indicate nullity. The next item to be read to the push—down list

goes to AR,y .




Conclusion

This report has outlined a method by which a campiler can be programmed
(by syntax machine programs) to accept various source Ja nguages. Apart from
the final assembly of the postfix string to target-machine code the method is
not particularly dependent on the computer making the translation, since the
compiler is constructed to perform interpretively on the syntax program and
on the syntactic operators in the postfix strings.

The syntax program will not be lengthy, as is demonstrated by the examples
of Part 2, Perhaps 300 - LOC imstructions in the syntax program are sufficient.

The quality of the translation will be variable, since no method of
economization of subexpressions is included, nor is any method of economization
of index register proposed. Methods for these could be developed, for example,
by modifying syntax machine so that it could
(1) Analyze arithmetic expressions to pioduce the so called three-address

form (this might require a right to left scan) and search for common

subexpressions among the output.
(2) Abstract from the source language some parts, e.g., subscripis and

loop control statements, for analysis by a more powerful symbol

manipulator with re-insertion in the program by methods like those

of Part 3. This would require extensicns to the syntax machine so

that its subprograms (recognizers) could be written with parameters.
The speed of translation is likely to be high; it is estimated that it would
take 1000 instructions in the computer making the translation to produce one
machine instruction of the translation. On the IBM 704 for example, this
means that translation is at the rate of LO instructions per second.

The ma jor part of the syntax machine has been simulated on the IBM 550,

This interpretive simulation program required 50 instructions and simulated




bL

comparators for single characters and the subrcutine facilities described in
Part 1; the output mechanism was alsc simulated., Each pseudo-instruction required
two cells of storage. Some coding experimenits indicate that the assembler will
require not more than about 40O instructions. Thus, it seems possible to write

a quite powerful compiler in 500 instructions plus the syntax program.
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